If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+4x-1=0
a = 11; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·11·(-1)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{15}}{2*11}=\frac{-4-2\sqrt{15}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{15}}{2*11}=\frac{-4+2\sqrt{15}}{22} $
| 4t–3(t–2)=t+6 | | 3/10n=-4/5 | | -5(5x-4)+10x-6=7x-10+6x | | 2(9b-1)+7(b+6)=-60 | | 3x-12-7x=2(x+6) | | X+8x=560 | | 5t^2-26t-40=0 | | 4=v3 | | 2a^2-5=25 | | (x+3)(2x-1)-(4x²-1)=0 | | X^2+10=5x+4 | | 1/3x+5=20 | | 4(4x-1.9)=3x-7.6 | | -6x+3(x+7)=18 | | q+15=20 | | 6(a+3=21-3(1-2a) | | -0.5x+7.79=-0.3x+3.39 | | y3+19=21 | | 23=19+x | | 42(3y-4)=88(y-1) | | 3.9x-93=2.7x+3 | | 3x6=x9 | | t5=2 | | 39=7+4d | | -7(x+1)-16=18+8 | | -2(u-6)=-5u+33 | | 6(x-1.1)=8.4 | | -32=-8y+4(y-3) | | 2/5=14/w | | H+3h=4 | | -2(u-6)=5u+33 | | -2x-3=-9-4x |